Hi, I'm Scarlett, an over-emotional teenager obsessed with the internet, and I go by Smidge on here. I aspire to be well-known for my writing. I post a multitude of things and tag all of it, so you can blacklist/browse as you please.

arthnoldpendragon:

steven moffat is the writer of some of doctor who’s scariest monsters, for example the weeping angels, atrocious writing and misogyny

the-gigapause:

gutsygumshoe:

cadoized:

people that hate on female characters for “getting in the way” of gay ships

image

is that a reaction image or an example

yes

You do realize this is a game, played out on a global scale? If you really want to know how a bank in Paris was robbed from a stage in Las Vegas, Vegas was just the start. Whatever this grand trick is, it was designed a long time ago and I believe it what was about to follow was really going to amaze. Look closely, because the closer you think you are the less you’ll actually see.

(Source: iansomerhaldervevo)

sherlck:

the sexual tension between me and good cinematography

vvant:

im just so glad the word “ugh” was invented

lissaraptor:

grantaire-put-that-bottle-down:

ihititwithmyaxe:

mothernaturenetwork:

 Harry Potter wizarding genetics decoded



If the wizarding gene is dominant, as J.K. Rowling says in her famous series of Harry Potter books, then how can a wizard be born to muggle parents (non-magical people)? And how can there be squibs (non-magical people born into wizarding lines)?
It seems these baffling genetic questions have finally been answered, thanks to Andrea Klenotiz, a biology student at the University of Delaware.
In a six-page paper, which she sent to Rowling, Klenotiz outlines how the wizarding gene works and even explains why some witches and wizards are more powerful than others.
“Magical ability could be explained by a single autosomal dominant gene if it is caused by an expansion of trinucleotide repeats with non-Mendelian ratios of inheritance,” Klenotiz explains.
What does this mean?
In school we learn the fundamentals of genetics by studying Gregory Mendel’s pea plant experiments and completing basic Punnett squares. Basically, we’re taught that whenever one copy of a gene linked to a dominant trait is present, then the offspring will exhibit that dominant trait, regardless of the other gene.
However, Non-Mendelian genes don’t follow this rule, which is the basis of Klenotiz’s argument. She says that the wizarding gene could be explained if it’s caused by a trinucleotide repeat, which is the repetition of three nucleotides — the building blocks of DNA — multiple times.
These repeats can be found in normal genes, but sometimes many more copies of this repeated code can appear in genes than is standard, causing a mutation. This kind of mutation is responsible for genetic diseases like Huntington’s Disease. Depending upon how many of these repeats occur in the genes, a person could exhibit no symptoms, could have a mild form of the disease or could have a severe form of it.
In her paper, Klenotiz argues that eggs with high levels of these repeats are more likely to be fertilized, a phenomenon known as transmission ratio distortion. She also suggests that the egg or sperm with high levels of repeats is less likely to be created or to survive in the wizarding womb.
This argument answers several questions about wizarding genetics:
How can a wizard be born to muggle parents?
Genetic mutations can randomly appear, meaning anyone could be born with the wizarding gene. However, there’s a better chance of magical offspring occurring if the parents are on the high side of the normal range for mutations.
How can a squib be born to wizard parents?
Although parents with these mutated magical genes would be likely to pass the gene on to their children, there’s still a possibility that any given offspring might not inherit the trinucleotide repeat.
How can varying degrees of magical ability be explained?
The more repeats a wizard inherits, the stronger the magical power he or she will have. If both wizarding parents are powerful wizards, it’s likely their offspring will also be powerful.
You can read Klenotiz’s full paper on wizarding genetics here.




Far and away one of the nerdiest things I’ve ever read. Love it.



FAVOURITE THING

lissaraptor:

grantaire-put-that-bottle-down:

ihititwithmyaxe:

mothernaturenetwork:

Harry Potter wizarding genetics decoded

If the wizarding gene is dominant, as J.K. Rowling says in her famous series of Harry Potter books, then how can a wizard be born to muggle parents (non-magical people)? And how can there be squibs (non-magical people born into wizarding lines)?

It seems these baffling genetic questions have finally been answered, thanks to Andrea Klenotiz, a biology student at the University of Delaware.

In a six-page paper, which she sent to Rowling, Klenotiz outlines how the wizarding gene works and even explains why some witches and wizards are more powerful than others.

“Magical ability could be explained by a single autosomal dominant gene if it is caused by an expansion of trinucleotide repeats with non-Mendelian ratios of inheritance,” Klenotiz explains.

What does this mean?

In school we learn the fundamentals of genetics by studying Gregory Mendel’s pea plant experiments and completing basic Punnett squares. Basically, we’re taught that whenever one copy of a gene linked to a dominant trait is present, then the offspring will exhibit that dominant trait, regardless of the other gene.

However, Non-Mendelian genes don’t follow this rule, which is the basis of Klenotiz’s argument. She says that the wizarding gene could be explained if it’s caused by a trinucleotide repeat, which is the repetition of three nucleotides — the building blocks of DNA — multiple times.

These repeats can be found in normal genes, but sometimes many more copies of this repeated code can appear in genes than is standard, causing a mutation. This kind of mutation is responsible for genetic diseases like Huntington’s Disease. Depending upon how many of these repeats occur in the genes, a person could exhibit no symptoms, could have a mild form of the disease or could have a severe form of it.

In her paper, Klenotiz argues that eggs with high levels of these repeats are more likely to be fertilized, a phenomenon known as transmission ratio distortion. She also suggests that the egg or sperm with high levels of repeats is less likely to be created or to survive in the wizarding womb.

This argument answers several questions about wizarding genetics:

How can a wizard be born to muggle parents?

Genetic mutations can randomly appear, meaning anyone could be born with the wizarding gene. However, there’s a better chance of magical offspring occurring if the parents are on the high side of the normal range for mutations.

How can a squib be born to wizard parents?

Although parents with these mutated magical genes would be likely to pass the gene on to their children, there’s still a possibility that any given offspring might not inherit the trinucleotide repeat.

How can varying degrees of magical ability be explained?

The more repeats a wizard inherits, the stronger the magical power he or she will have. If both wizarding parents are powerful wizards, it’s likely their offspring will also be powerful.

You can read Klenotiz’s full paper on wizarding genetics here.

Far and away one of the nerdiest things I’ve ever read. Love it.

image

FAVOURITE THING

penishole:

tobeymacguire:

when straight guys ask how lesbian sex works i feel really bad for their girlfriends because if you dont understand how to have sex with a girl in any way other than repeatedly putting your dick in her you are having some really bad sex

I want to reblog this 100 times but I’ll just do it once

movsi:

*puts snapchat text over area of insecurity* 

(Source: post-punker)

"ugh, pepper, you’re so gross." i say to my cat as she licks her own asshole and i shovel fist-fulls of kettle-cooked potato chips into my mouth straight from the bag

traddapotamus:

mattwt:

*presses button*

-slams fist down repeatedly, crying-

traddapotamus:

mattwt:

*presses button*

-slams fist down repeatedly, crying-

(Source: tearofunicorn)

(Source: qock)